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Abstract. The inelastic neutron cross section is calculated for a modulated spring 
chain, which models an incommensurate composite system. We obtain a difference 
equation for the neutron cross section which has an exact and analytic solution for a 
periodic modulation. The structure of the neutron spectrum is studied as functions 
of wavevector and energy transfers for a wide range of model parameters. In general 
the spectra consist of bands of intensity, except a t  special wavevectors where bands 
collapse to a singular structure characteristic of normal modes of vibration. 

1. Introduction 

A harmonic chain of atoms with modulated springs (stretching forces) has been ex- 
amined, during the past decade, with a view to understanding excitations in incom- 
mensurate phases of solids (Currat and Janssen 1988). The modulation of the springs 
models the change in local environment of the other atoms which surround a chain in 
an incommensurate composite system. In this and companion papers (Lovesey 1989, 
Lovesey and Westhead 1990 (hereafter referred to as paper I)) we report an extensive 
study of the vibrational properties of the modulated spring chain that exploits ana- 
lytic methods which produce exact results. One value of our findings is a reference 
against which to assess the physical significance of measured features. Discrepancies 
will arise from effects due to inter-chain couplings, anharmonicity and coupling to the 
energy density, for example. 

Here we focus attention on the vibrational spectrum observed in the so-called 
inelastic one phonon coherent neutron scattering cross section. For a regular crystal 
this cross section, in the harmonic approximatmion, vanishes unless there is conservation 
of energy and wavevector for annihilation or creation of a single phonon (Lovesey 
1987), and measurements yield phonon dispersion curves. Modulation of the springs 
in a harmonic system is shown to radically change the vibrational spectrum. A review 
of previous work is provided by Currat and Janssen (1988): see also Garcia e2 a1 
( 1 989). 

At a technical level, the spectrum reported here is for the dual model of the one 
examined in paper I. In the latter we provide the density of vibrational states, and 
local thermodynamic quantities, whereas the neutron scattering cross section is the 
vibrational spectrum of spatial Fourier components uq where q is the wavevector. 
Duality and the metal insulator transition is reviewed by Sokoloff (1985a, b). 
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Another interesting aspect is the comparison of neutron cross sections for the 
modulated spring chain and an analogous magnetic system in which atomic moments 
vary in magnitude from site to site (Lovesey 1988, Brackstone and Lovesey 1989, 
Lantwin 1990). Even though in both situations scattering events come from a coherent 
spatial superposition of atoms on a regular lattice there are basic differences in the 
spectra. These arise because in scattering from lattice vibrations the lattice structure 
is directly involved, whereas in scattering from magnetic moments i t  is the magnetic 
configuration which counts. In particular, the vibrational spectrum is singular when 
the neutron wavevector q coincides with a reciprocal lattice vector of the system with 
periodic springs. This arises because full translational invariance is restored to the 
scattering problem for these particular values of the wavevector. However, magnetic 
scattering does not assume a special form for this choice of wavevector; there is strong 
amplitude variation with changes in q but minimal energy dispersion. 

The model that  we solve was introduced by de Lange and Janssen (1981) and it 
possesses a simple cosine modulation of the springs as a function of the equilibrium 
atomic site positions. Results from this form of modulation enable us to readily 
solve the model with squared-cosine modulation (Cohan and Weissmann 1983). We 
assume that the atoms are equally spaced in the equilibrium state. While this is not 
consistent with Hooke’s law it has strong appeal because the resulting model can be 
solved exactly using simple analytic methods. 

We couch our discussion in terms of the lattice displacement Green function de- 
fined such that it is directly related to  the one-phonon neutron cross section. It is 
constructed from an equation of motion, which has the form of a difference equation 
in reciprocal (wavevector) space. This equation, for a cosine modulation, is provided 
in section 2, together with some frequency sum rules that are useful in understanding 
the basic features of the spectrum. Explicit results for the Green function are given 
in section 3 for q equal to a reciprocal lattice vector. The general result is contained 
in section 4, and specific examples of the spectrum are discussed in some detail in 
section 5 .  In section 6 we discuss the squared cosine modulation. Conclusions and 
comments are gathered at the end of the paper. 

2. Equation of motion and sum rules 

The basic model is the same as the one studied in paper I. Atoms of mass m are 
bound harmonically and the equilibrium configuration is a regular chain with unit 
lattice spacing (the Vibrational spectrum of atoms on a disordered chain is considered 
by Kim and Nelkin 1973). The potential energy is 

Here, U, is the displacement (assumed to  be small compared to the lattice spacing) 
of the atom at the site labelled by integer n, and a, is the spring constant 

in which the strength y,  phase A and wavevector of magnitude Q specify the sinusoidal 
modulation. 
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We choose to  obtain the spectrum of spontaneous fluctuations of the spatial Fourier 
components { u q }  from a Green function G(q, E )  where E is the energy parameter; the 
spectrum is the dual of the density of states provided in paper I. In a neutron scattering 
experiment, q and w = &'I2 are the changes in wavevector and energy in the scattering 
process. 

The effect of the sinusoidal modulation in the equation of motion is to couple uq 
with uqfQ, i.e. it has the form of a difference equation. In view of this, we are led to 
consider a Green function P ( ~ , E )  that yields the temporal Fourier transform of the 
displacement correlation function ( u i ~ ~ + , ~ ( t ) ) .  By construction P(O,E) = G(q, E )  is 
the Green function of interest in calculating the neutron cross section, proportional 
to  (Lovesey 1987) 

- ( 1 / ~ ) { 1  - exp(-w/T)}-'ImG(q,e) (3) 

where T i s  the temperature and the imaginary part of G is obtained with E = w 2 ,  w+iq 
and + O t .  In the absence of spring modulation (y = 0), 

mG(q, E) = 1 / ( ~  - w i )  (4) 

and 

where w i  = 4a is the phonon dispersion in a chain of atoms. 
The equation of motion for P ( ~ , E )  is directly obtained from the equation for uq 

constructed by Fourier transformation of the real space equation of motion. We find 

where 

and 

2 
E , = E - w  qtnQ 

T, = - 2 y s i n { ~ ( q + n Q ) } s i n { ~ ( q + ( n -  1)Q)). 

(7) 

Note that the phase A in the spring constant (2) does not appear in the equation 
for P ( ~ , E ) .  This is because the equation is constructed for Q an irrational multiple 
of 2ir, i.e. for an incommensurate system. Change of the phase A is a continuous 
symmetry of such a system and therefore we expect that the neutron cross section will 
be independent of A.  

Subsequent sections describe solutions of (6) for rational Q = 27rM/N (where M 
and N are coprime integers) obtained by algebraic methods. At this juncture it is 
to  be noted that (6) is the dual of the real-space Green function equation of motion. 
It is constructed for Q irrational since this is the situation of physical interest. The 
fact that we exploit the periodicity which results from taking Q rational to construct 
algebraic solutions is a mathematical trick unconnected to the physical properties of 
interest. Of course, an irrational value of Q can be approached to arbitrary accuracy 
using a sequence of rationals, for example a Fibbonaci sequence, though we do not 
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pursue this topic. In the next section we describe solutions for special values of q and 
then report the general solution. 

Before this we report sum rules which can be constructed from the equation of 
motion. These are useful in unravelling general features of the spectrum, as well as 
gauging its shape and sensitivity to the spring modulation. We find for the integral 

- d& E" ImG(q, E )  

the results 

1 for n = 0 
for n = 1 
for n = 2. 

4 
wf: + T$ + T; 

(9) 

From these we conclude that the spectrum is normalised to unity and the mean value 
(i.e. the sum rule for N = 1) is independent of the modulation when this takes the 
form of a simple cosine as in (2). Futhermore, intensity shifts to  higher frequencies 
with increasing q and the modulation influences the high frequency components more 
strongly than the low frequency components. Note that T: + T; is proportional to 
w i  and vanishes in the long-wavelength limit. Dependence on the N-fold periodicity 
occurs in the second frequency sum rule. This is finite in the limit N + 00 indicating 
a bounded spectrum which is an envelope of N bands having a mean square width 
(27/~o)~wz[sin'({q + &1/2) +sin2({q - &1/2)1. 

3. Special cases; q = 2 m / N ,  s = 0 ,  1, 2, .  . . 
In the next section we obtain an expression for G(q, E )  by iteration of the infinite set of 
difference equations (6). This produces infinite continued fractions for the quantities 
P(&l,&)/P(O,&). In the general case this yields a spectrum which consists of N finite 
bands of intensity located where the Green function given by (18) is pure imaginary. 
A special form for the expression for G arises in the case when one or more of the 
parameters {T,} is zero because in this case the iteration procedure stops after a finite 
number of steps. This of course gives finite continued fractions and yields a spectrum 
which is singular, consisting of a number of delta functions rather than finite bands. 
Consideration of these special cases first gives valuable insight into the structure of 
the spectrum. 

Observing the form of T, given in (8) we see that if we set q = 2.rrs/N with 
s = 0 ,1 ,2 , .  . . (i.e. q is equal to a reciprocal lattice vector) then T, and T,+, will be 
zero if we can find an integer p such that 

We are interested in solutions of (10) for the case where N and M have no common 
factors, i.e. they are coprime. When this condition holds a standard theorem in 
number theory shows that (10) will have integer solutions in the range 0 5 p 5 (M-l), 
0 5 n 5 ( N  - l ) ,  for any integer s. So, for q equal to any reciprocal lattice vector there 
exists n such that T, = T,,, = 0. The resulting singular structure in the spectrum at 
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the reciprocal lattice vectors allows us to determine the periodicity of the modulation 
from the dynamics. 

Let us examine the case of s = 0, i.e. q = 0. The solution of (10) is then p = n = 0, 
so To = Tl = 0. We can obtain G(q, E )  directly by setting n = 0 in equation (6): 

EoG(q,E) = (l/m) +TOP(-~,E) + T ~ P ( ~ , E )  (11) 

for s = 0 this gives 

This shows that the spectrum is singular and independent of the spring modulation. 
Physically this stems from the fact that it costs no energy to make a uniform transla- 
tion of the atoms. 

A second special q of interest is q = Q which corresponds to setting s = M in (10). 
In this case solution of (10) yields the result To = TN-l = 0. The equation for G is 
then 

The finite continued fraction on the right-hand side is readily expressed in compact 
and convenient form. 

To this end we introduce two sets of functions { p , }  and {q,} which are constructed 
recursively from 

with the same equation for qn, starting from the initial values po = q1 = 0 and 
p, = qo = 1. It is easy to demonstrate that 

The expression on the right-hand side of (13) is obtained with h = 0 and n = ( N  - 2); 
the general form of (15) is required in the following section. 

From (13) and (15) we arrive at  the result 

Since pn and qn are polynomials of order ( n  - 1) and (n - 2) respectively, the denom- 
inator of G(Q,E) is a polynomial of order ( N  - 1). Hence, the spectrum ImG(Q,&) 
will in general consist of ( N  - 1) delta functions. A specific example is provided in 
section 5 .  

If we apply the same method to a general s we obtain a Green function whose 
denominator is a polynomial of order at  most ( N  - 1). The spectrum is therefore 
singular, consisting of a t  most ( N  - 1) delta functions. 

We conclude that the spectrum is singular for q equal to a reciprocal lattice vector. 
In the next section we construct the spectrum for arbitrary q and find that it consists 
of N bands. 
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4. Arbitrary q 

For this case to obtain G ( q , E )  it is necessary to construct continued fractions for 
P ( f l , ~ ) l P ( O , e ) .  Because they are periodic Tn+N = T, and E?+, = E,, it is 
possible using identities like ( 1 5 )  to express them in simple algebraic forms in terms 
of the polynomials { p , }  and {q,}. For example, h = P(~,E)/P(O,E) is the fixed point 
of the linear transformation (15) evaluated for n = N .  A similar scheme exists for 
P(-l, c) /P(O,  E ) .  The results, together with the Wronskian relation 

P n + l q n  - p n ~ n + l  = (Tl/Tn+l) ( 1 7 )  

enable us to obtain a closed algebraic form for G ( q ,  E ) .  Further details of the mathe- 
matical steps involved can be found in Lovesey ( 1 9 8 8 )  and paper I. 

Assembling results, the required expression is 

Except a t  q = 27rs/N, s = 0, 1 , 2 , .  . ., the spectrum ImG(q, E )  is finite within bands 
for which 

b N + 1  + q N l 2  - < 0. ( 1 9 )  

The function on the left hand side is a polynomial in E of order 2 N .  Stable solutions 
occur for E = w 2  > 0. The choice of sign in ( 1 8 )  is related to the convergence of the 
continued fractions and yields a spectrum which is strictly positive within the bands, 
as demonstrated in paper I. 

In describing the spectrum it is useful to consider periodic {Xi} and antiperiodic 
{ p i }  roots: 

where i = 1 , 2 , .  . . , N .  It can be shown that the inequality (4.3 ) is satisfied for E 

within a band specified by a pair X i ,  p i  and gaps are alternatively specified by pairs 
p i ,  p i t l  and X i ,  X i t l .  A simple example is displayed in figure 1 ,  about which we will 
have more to say in the next section. 

The results 

i i 

are analogous to the first frequency moment of the spectrum and demonstrate that 
its width is insensitive to the spring modulation. The results 

I I X i  = ( - l ) N ( T o T 1  * . . T N - l ) ( P N + l  + q N - 2 ) 1 c = 0  

E p i  = ( - l ) N ( T O T 1  * . * T N - l ) ( P N + l  + qN + 2)1c=0 

( 2 3 )  

( 2 4 )  

i 

i 

can be useful in certain calculations. 
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Figure 1. The energy band structure and neutron scattering spectrum are shown 
for periodicity N = 3 and v = 3. Crosses in the band structure, shown on the left- 
hand side, denote positions of the delta functions which occur in the spectrum for 
q = 0 and q = 2 ~ / 3 .  The band edges {pi} are at 0,0.375 and 1.125, and the band 
edges { X i }  are shown as broken curves. The neutron spectrum is shown for q = A 

on the right-hand side of the figure. The actual quantity shown is m ImG(q, B) for 
which the total area is A. The minimum value of the high-frequency contribution 
to the spectrum is 49.98, and the band edges ei are (0,0.125), (0.215,0.375) and 
(1.125,1.159). 

5.  Examples 

In this section we report specific examples of the neutron cross section for the mod- 
ulated spring chain. Particular attention is given to  the case N = 3 ,  Q = 2 r M / 3  
where M = 1,2.  This is sufficiently simple to  record in detail, yet nicely displays 
the essential features of the spectrum of a modulated chain. The size and complexity 
of the polynomials {p,} and {q,} for large n,  greater than n = 5 say, precludes ana- 
lytic manipulations for large periodicities. However, the spectrum is easily constructed 
numerically as we shall see. 

The Green function for N = 3 is obtained from the general result (18) using 

and 

where ni 7 = T,T,T,. At this point we can note that the effect of changing M = 1 to 
M = 2 is simply to  permute the parameters T, and E,,: T, + T3, T2 + T,, T3 + T,, 
and, E, + E,, E, + E,, E3 + E3. This permutation leaves the right-hand side of 
both (25) and (26) unchanged so that the Green function is invariant under M = 1 
going to  M = 2.  
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Using (6) and (7) we obtain from (26) 

where v = (7/2a) and E is measured in units of the maximum phonon frequency wo.  
Note that the factors of ni cancel in the result for G(q, E )  and that quantities ni Xi 
and Hi pi are given by the appropriate constant term in (28). 

For q = 0, 

El& - T,2 = E2 - :E + &(1- v2> 

so m G ( 0 , ~ )  = 1/c in accord with general result obtained in section 3. 
The constant term on the right-hand side of (28) also vanishes for q = 27r/3. This 

corresponds to q = Q for M = 1 or to q = Q/2 for M = 2. For this value of q the 
spectrum is singular. From either (25) and (28) evaluated for q = 2n/3, or (16), we 
find, 

1 1 
2 m G ( 2 ~ / 3 , ~ )  = - + - 

& - E 1  & - E 2  

where c1 = 3(1- v)/4 and c2 = 3( 1 + v)/4. Evidently Im G(2n/3, E )  is the sum of two 
delta functions located at c1 and c2 which are equidistant above and below the phonon 
dispersion at  q = 2ir/3 in an unmodulated chain. In figure 1 these are indicated by 
crosses together with the singular contribution a t  E = 0. The result (28) satisfies the 
sum rules provided in section 2. 

For other values of q the spectrum consists of three bands; results for v = f are 
displayed in figure 1. With v = f ,  the maximum value consistent with stability, the 
band edge frequencies { p i }  are independent of q and have values 0, Q and i .  The 
band edge frequencies {Xi} are the roots of (28) taken with the lower sign. Note that 
the coefficient of c2 is -2.  In consequence, the sum of the band edge frequencies is 5, 
consistent with (22). From figure 1 it is seen that {Xi} display strong dispersion. 

The actual spectrum is shown in figure 1 for q = 7r. It consists of three bands; 
the two low frequency bands tend smoothly to zero at  their high frequency edges, 
whereas a square root singularity, characteristic of one dimensional motion, occurs at  
the other four band edges. The low frequency bands are weak in intensity compared 
with the high frequency component, which is expected at  this value of q given that 
the spectrum is normalised to 7r and the first frequency moment is T W ; .  Decreasing q 
leads to a shift in intensity to the low frequency bands, with a total concentration at  
E = 0 in the limit q -+ 0. 

Examples of spectra for N = 4 and N = 5 are shown in figure 2. These are 
generated numerically from (18) and (14). We chose values of q which are at  the 
Brillouin zone edges where the bands are widest. Each spectrum consists of N bands, 
the width of the bands decreases as N increases. 
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( a )  N . 4 ,  q = n l 4  

( b )  N.5, q-nI5  

1 
E 

7433 

2 

Figure 2. The neutron scattering spectrum is shown for periodicity in ( a )  N = 4, 
q = n/4 and ( b )  N = 5 ,  q = a/5. Both cases have M = 1 and U = 6 as in figure 1, 
and cy = y = 0.25.. The spectrum is shown as a function of E for values of q that lie 
at the Brillouin zone edges, where the bands are widest. 

6. Squared-cosine spring modulation 

The paper by Cohen and Weissmann (1983) motivates us to consider different forms 
of the spring modulation, particularly powers of the simple cosine wave. We note here 
that the squared-cosine modulation can be solved easily by using the above work and 
the identity 2 cos2(0) = 1 + cos(20). 

We consider the spring constants to take the form 

a,  = m{a’ - y’cos2(n&’ + A’)} (29) 

where Q’ = w M / N ,  so that we have a system of periodicity N .  Using the above identity 
we see that this system can be transformed into a system with cosine modulation where 
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the parameters in ( 2 )  become 

Using this transformation the full solution for the system with squared-cosine modu- 
lation is obtained. 

7. Conclusions 

The work reported provides a comprehensive algebraic solution for the dual spectrum, 
and corresponding inelastic neutron cross section, of the (harmonic) modulated spring 
chain. For a modulation wavevector Q = 2 r M / N  the spectrum consists of N bands for 
an arbitrary external wavevector q. In general, the spectrum displays inverse square 
root singularities at  band edges, characteristic of a one dimensional model, but this 
feature in the neutron cross section is absent for some high symmetry values of q. 

Bands collapse to produce singular (delta function) contributions in the cross sec- 
tion for special values of q. One such value is q = 0 for which the spectrum, as expected, 
consists of a single delta function at  zero energy, independent of the spring modulation. 
A second expected special case is when q matches the harmonic of the modulation, 
q = Q .  For this wavevector the spectrum consists of ( N  - 1) delta functions located 
at  energies which depend explicitly on the form of the spring modulation. Similar 
singular behaviour occurs whenever q is equal to any reciprocal lattice vector. 

These singular features of the dual spectrum do not arise in the spectrum for 
scattering from transverse spin fluctuations in a longitudinally modulated magnet. 
This result, mentioned already in the introduction, stems from fundamental differ- 
ences in the nature of coherent scattering processes from lattice vibrations and spin 
fluctuations. 
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